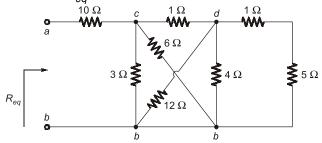


ELECTRICAL ENGINEERING

CONVENTIONAL Practice Sets


CONTENTS

ELECTRIC CIRCUITS

1.	Basics, Circuit Elements, Nodal & Mesh Analysis
2.	Circuit Theorems
3.	Capacitors and Inductors44
4.	Transient Response of DC and AC Networks (First Order RL & RC Circuits, Second Order RLC Circuits)
5.	Sinusoidal Steady State Analysis, AC Power Analysis70
6.	Magnetically Coupled Circuits
7.	Frequency Response and Resonance
8.	Two Port Networks
9.	Network Topology, Miscellaneous

Basics, Circuit Elements, Nodal & Mesh Analysis

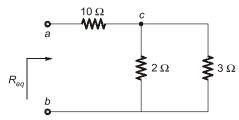
Q1 Calculate equivalent resistance R_{eq} in the circuit shown.

Solution:

 $3\,\Omega$ and $6\,\Omega$ resistors are in parallel because they are connected to same two nodes c and b. Their combined resistance is

$$3\Omega | | 4\Omega = \frac{3 \times 6}{3 + 6} = 2\Omega$$

Similarly, 12Ω and 4Ω resistors are in parallel since they are connected to same two nodes d and b.

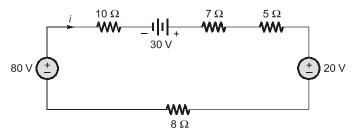

Hence,
$$12 \Omega | |4 \Omega = \frac{12 \times 4}{12 + 4} = 3 \Omega$$

Also, 1 Ω and 5 Ω resistors are in series, hence combined resistance,

Further 3 Ω and 6 Ω in parallel gives equivalent resistance = $\frac{3 \Omega \times 6 \Omega}{(3+6) \Omega} = 2 \Omega$

This 2 Ω is in series with 1 Ω .

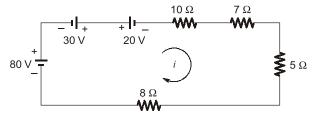
Given equivalent as $(2 + 1) \Omega = 3 \Omega$ as shown below.



Now 2 Ω and 3 Ω parallel's combination in series with 10 Ω resistance.

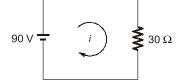
Hence,
$$R_{ab}=R_{eq}=\ 10\ \Omega+(2\ \Omega\ |\ 3\ \Omega)$$

$$=\ 10+\frac{2\times 3}{2+3}=11.2\ \Omega$$



Use resistance and source combinations to determine the current *i* in figure shown and power delivered by 80 V source.

Solution:


The circuit can be redrawn as,

Further combining the three voltage sources into an equivalent source of 90 V as shown below.

All the resistance, combined in series as,

$$R_{eq} = (10+7+5+8)~\Omega = 30~\Omega$$
 Simply applying kVL,
$$-90+30i = 0$$
 Hence,
$$i = 3~\mathrm{A}$$
 Power delivered by 80 V source = 80 V × 3 A = 240 W

Q3 The following mesh equations pertain to a network:

$$8I_1 - 5I_2 - I_3 = 110$$

 $-5I_1 + 10I_2 + 0 = 0$
 $-I_1 + 0 + 7I_3 = 115$

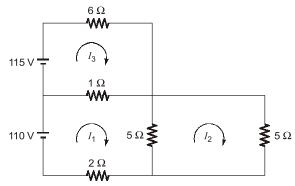
Draw network showing each element.

Solution:

All the mesh equations can be rearrangement as,

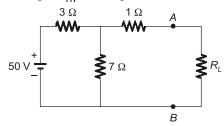
$$8I_{1} - 5I_{2} - I_{3} = 110$$

$$\Rightarrow 5(I_{1} - I_{2}) + (I_{1} - I_{3}) + 2I_{1} = 110$$

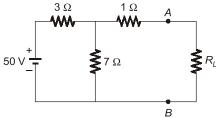

$$-5I_{1} + 10I_{2} + 0 = 0$$
...(1)

$$5(I_2 - I_1) + 5I_2 = 0 \qquad ...(2)$$

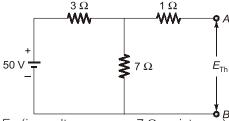
$$-I_1 + 0 + 7I_3 = 115$$


$$\Rightarrow$$
 $(I_3 - I_1) + 6I_3 = 115$...(3)

On the basis of equation (1), (2) and (3), we can draw the network as,

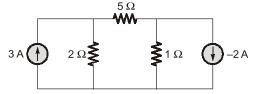

Circuit Theorems

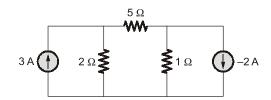
Q1 What is the value of Thevenin voltage E_{Th} in the given circuit of figure?



Solution:

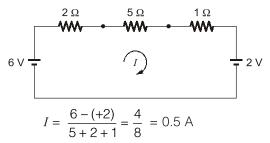
Given circuit is,


Step-1: Remove load resistance R_1

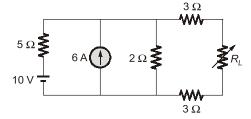

Step-2: Find Thevenin voltage E_{Th} (i.e. voltage across 7 Ω resistance)

$$E_{\text{Th}} = \frac{7 \times 50}{(7+3)} = 35 \text{ V}$$

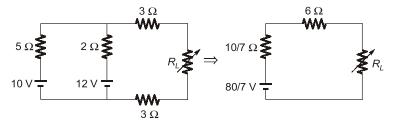
Q2 Determine the current through the 5 Ω resistor in the circuit of figure.



Solution:

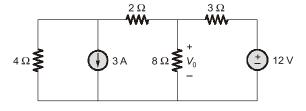


Applying source transformation:

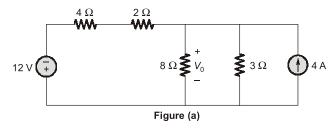


Q3 Find the maximum power that can be transferred to R_L .

Solution:


We remove R_L , convert the current source into a voltage source and using Millman's theorem reduce the network.

Maximum power is transferred at $R_L = 6 + \frac{10}{7} = 7.43 \Omega$


$$P_{\text{max}} = \frac{\left(\frac{80}{7}\right)^2}{4 \times 7.43} = 4.39 \text{ W}$$

Q4 Use source transformation to find V_0 in circuit shown.

Solution:

Using source transformation,

